
Java application
modernization:

Contents

Introduction 3

Motivations to modernize 5

Why application modernization is at the top of the CIO agenda 7

Business agility 7

Cost of ownership 7

Risk 8

Why UX matters: Driving efficiency for users and business 8

Why DX matters: Driving efficiency for developers 11

Impact of better developer tools and velocity 12

Choosing the right approach to modernize each application 13

WHITE PAPER

Selecting the right approach

Assessing application characteristics 13

Assessing team characteristics 15

Assessing architecture approaches 18

Assessing approaches to scalability 22

Assessing other technical requirements 21

Startup time and performance 21

Cross-field validation 21

Security 22

Support availability 22

Mapping your path with Vaadin 23

Vaadin Flow 23

Hilla from Vaadin 23

Pre-built UI components from Vaadin 23

Selecting the right Vaadin framework 23

Over the last decade, the drive towards digital transformation and
cloud adoption has been heavily focused on consumer-facing web
applications as well as the use of SaaS packaged software. However,
enterprises also rely on custom applications that are often the
backbone for delivering the unique value of their particular business.

These business-critical applications, often built in Java, enable
organizations to deliver differentiated products and services to their
customers. Examples abound in every industry, including software that
manages manufacturing processes, financial transactions, health care
delivery, data analytics, and client support.

As organizations continue their digital transformation journey, they
must consider when and how to modernize these Java enterprise
applications. Through modernization, a company’s software applications
can better work with new web technologies, cloud services, mobile
devices, and security processes, helping to eliminate the expensive
technical debt that creates a drag on productivity. At the same time,
modernizing the user experience (UX) for a legacy application can
significantly improve employee productivity, especially for software that
is built for repetitive activities across many users.

In this white paper, we will highlight the key motivations, considerations,
challenges, and approaches to modernizing Java-based applications.

Introduction

Software modernization is
a top priority for 40%

of IT sector decision makers
according to a 2021 study by
Forrester Consulting and IBM.

https://www.ibm.com/downloads/cas/EGYDWQPY
https://www.ibm.com/downloads/cas/EGYDWQPY

There are different reasons why organizations might consider
modernizing their applications.

One common reason that people consider modernization is technical
debt. They have legacy or older applications that might be running on
outdated technology that could be difficult to upgrade for new use
cases or capabilities.

They might be on a digital transformation journey and need to shift the
application out of a data center that’s being decommissioned into the
cloud. Or they may be outsourcing the hosting of the application to a
third party. As a result, they need to move a desktop front end to a web
front end and deploy that application to the cloud.

In addition, remote work is accelerating this transformation as it has
sped up the need for digital transformation. For example, workers
that moved from working in an office to working at home might need
to access their enterprise application over the web and internet. This
would require modernizing the application.

While the initial impetus for modernization might be technical debt,
cloud migration, or remote work, there are three key business factors
that a CIO would consider in deciding to proceed with modernization.
These are risk, agility, and cost.

Motivations to modernize In a 2021 IDG survey of 400 IT leaders, 65% indicated that it
was very important to accelerate application development and
modernization to enable innovation, and advance the business.

Why application modernization
is at the top of the CIO agenda

Business agility
Businesses are able to respond quickly to new market opportunities and
innovate when their business-critical applications are flexible. Research
shows that up to 84% of CEOs believe innovation is critical for growth.

However, legacy applications running on older technologies can resist
change by being difficult to run on the latest platforms. Companies
looking to reduce their dependence on older technologies are also
reluctant to invest further in their legacy applications, even if they are
business-critical applications.

Cost of ownership
Organizations can save money when modernizing their legacy
applications: Embracing open-source software, reducing complexity
by consolidating platforms, leveraging economies of scale in the cloud
and maintaining a simpler, modern application architecture can all
reduce the total cost of ownership.

Research shows legacy systems can climb 15% in ownership cost year
to year, implying the budget-conscious decision would be to suffer the
one-time expense of modernization in favor of creeping maintenance
costs.

Risk
Security tops the list of technical risks that CIOs face in 2022. However,
they are also concerned about business risks, such as downtime
and business continuity. These can be associated with outdated or
unsupported software.

Legacy technologies that no longer receive critical security updates
can become increasingly vulnerable to cyber threats. Whether a
technology comes from a vendor or an open source community, if it is
deprecated, poorly maintained or no longer gets security patches, it
can create significant business risks to the organization. These risks
can be mitigated through application modernization and the use of
technologies that are actively supported with regular updates.

Why UX matters: Driving
efficiency for users and business

Good UX is about more than “being nice to users". Its main goal is to
help users do what they need to do with an application with as little
friction as possible. Reducing friction means that users can complete
their tasks more quickly, increasing their efficiency.

https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/how-we-help-clients/growth-and-innovation
https://medium.com/@audaciasoftware/the-cost-of-legacy-it-1c1fa6217e59

“Employees who are engaged are more
likely to stay with their organization,

reducing overall turnover and the costs
associated with it. They feel a stronger

bond to their organization’s mission and
purpose, making them more effective

brand ambassadors. They build stronger
relationships with customers, helping their

company increase sales and
profitability.”

Forrester

”
Turo Italia used Vaadin to build a new UX for a Quality Control
application. Reporting issues that had in some previous cases
taken them an hour to complete, now only take a few minutes.
The substantial increase in efficiency is possible thanks to the
user interface.

“Quriosity is an intuitive and easy application; it perfectly meets
the needs of operators by making information quickly available.
The user interface is so clear and well-arranged that it can be
used also by people not so skilled in informatics.
As a result, we have considerably reduced the time necessary
to create new non-compliancy reports and we can better keep
control of our job.”

Real world efficiency gains at Turo Italia

Technology also plays a significant role in how employees engage at
work. According to Forrester, employees who scored in the top 20%
of their EX index – used to measure employee engagement – were
more likely to be satisfied with their technology environment. Higher
engagement leads to higher employee retention.

However, delivering a good UX isn’t just about making users happy,
it’s also good for business. In fact, the McKinsey Design Index showed
that companies with good design deliver revenue growth as much as
2x higher than others in their industry. Good UX also lets employees
be more productive while reducing the risk of errors. For instance,
Citibank's recent $500 million UI blunder is a classic example of how
poor design can impact business negatively.

https://vaadin.com/customer-stories/turo-italia
http://ciodive.com/news/employee-experience-index-forrester-technology/573677/
http://ciodive.com/news/employee-experience-index-forrester-technology/573677/
https://www.forbes.com/sites/forbestechcouncil/2015/11/19/good-ux-is-good-business-how-to-reap-its-benefits/
https://www.mckinsey.com/capabilities/mckinsey-design/our-insights/the-business-value-of-design
https://arstechnica.com/tech-policy/2021/02/citibank-just-got-a-500-million-lesson-in-the-importance-of-ui-design/

The benefits of application modernization are clear, yet CIOs face
challenges in delivering these projects. A recent Mckinsey report
reveals that 28 percent of respondents cited the complexity of their
current environment as a key challenge. The report quotes a technology
leader in financial services: “We were surprised by the hidden
complexity, dependencies and hard-coding of legacy applications, and
slow migration speed.”

Providing the right tools for developers will drive greater developer
velocity. Higher developer velocity means faster time to market and,
ultimately, higher revenue growth.

In fact, a McKinsey Developer Velocity report identified that those
companies that have the highest Developer Velocity Index will see
revenue growth up to five times higher than the rest of the market. In
addition, they identified that companies with strong developer tools
are 65 percent more innovative and have 47 percent better developer
retention rates.

Many organizations will choose to combine their existing Java back-
end services with a modern user interface. To ensure a timely transition
and reduce future maintenance overhead, organizations need to
carefully consider the tools, frameworks, and architectures they use to
modernize their Java application

Why DX matters: Driving
efficiency for developers

Impact of better developer
tools and velocity

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unlocking-business-acceleration-in-a-hybrid-cloud-world
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance

sensitive to waiting a few seconds or minutes for the startup, they are
highly sensitive to delays in completing their repetitive tasks, since they
can greatly inhibit both individual and organizational efficiency. Think
of a health care delivery app where every minute spent by a nurse
or doctor impacts patient care. Or an application supporting clients
where delays can impact customer wait time or the number of required
support staff.

While some applications can have a mix of these characteristics,
this framework can help you to better assess your approach to
modernization for each application.

Application characteristics

There are two main technical approaches to modernizing Java
applications – one is to use Java for the entire application and the other
is to separate the front-end from the back-end. In the latter case, you
will commonly choose a front-end language (such as JavaScript or
TypeScript) and a front-end framework (such as Lit, React, Angular,
Vue, etc) while continuing to use the Java-based backend. However,
before you begin to decide on your technical approach, it’s critical
to understand the characteristics of the application, (including the
key metrics that are critical to optimize for its success) and the
characteristics of the development team.

Choosing the right approach to
modernize each application

Broadly, there are two major categories of applications to consider.
The first would include “consumer-scale” applications that may serve
up to millions of users. Examples include shopping, social, or consumer
financial applications. In these applications, it is critical that the user
interface be intuitive, since it may be days or weeks between user
visits. It must also have a fast startup time, since consumers may
abandon it if they are faced with initial waits.

The second category would include “enterprise-scale” applications that
are often designed to serve hundreds to tens of thousands of users.
These users may be internal employees, partners, or clients. However
they are often used repetitively every day, perhaps dozens or hundreds
of times per hour or day. While users might be less

Assessing application characteristics

Another important factor to consider is the technical skill set and
preferences of your available development resources. Even if you are
using contractors or outsourcing work, you will still want to understand
the available skill set.

In the Q1 2022 Developer Nation Pulse Report, Java and JavaScript
(including TypeScript) are two of the three most popular languages.
However, many developers are experts in either of these two
languages. Not both.

Assessing team characteristics

For legacy Java applications, especially those currently running on
the desktop instead of the browser, your development team may be
Java experts but have limited experience in JavaScript. Even if you
have hired newer developers or those that have worked on modern
“consumer-scale” web applications, you will likely find that they are
either back-end engineers (often using Java) or front-end engineers
often with experience in JavaScript and related frameworks. In some
cases, you may already have in place separate front-end and back-end
teams with the requisite skill set.

https://www.developernation.net/developer-reports/dn22

Once you have assessed the characteristics of your application and
your team, you can begin to assess your architectural choices. One
of the key elements to consider is whether your application uses a
“stateless” or “stateful” architecture. This choice is influenced by the
characteristics of the application (“consumer-scale” vs “enterprise-
scale”) as well as the skills of the development team. In the case of
application modernization, you need to consider the architecture of the
existing application as well as your desired goals.

The choice of architecture impacts the full cycle from development to
deployment of a web application. Since there are pros and cons to both
approaches, it is important to ensure that your choice aligns with your
application characteristics and modernization goals.

Assessing architecture approaches

Team characteristics

Skills Pure Java expertise JavaScript plus Java expertise

Prefer to leverage Java skills
without learning front-end
JavaScript or frameworks

Prefer a hybrid approach with Java
back-end and JavaScript for front-end

Understanding stateful vs stateless applications

In computer science, “state” is a broad term used to describe the
current value and content of an application. In web applications, it
refers to maintaining sessions for authentication and similar processes.

Definition

Stateful application Stateless application

“Each client initiates a session
on the server and then
invokes a series of services
on the server, finally exiting
the session.

“Each request from client to server
must contain all of the information
necessary to understand the request,
and cannot take advantage of any
stored context on the server.

Application state is kept
entirely on the server.”

Source: Roy Thomas Fielding
PhD Dissertation

Session state is therefore kept
entirely on the client.”

Source: Roy Thomas Fielding PhD
Dissertation

Server
interaction

Requests during a user
session must go to the
same server that holds
their state data – or they
lose the context of previous
transactions.

Requests during a user session may
go to any server since all of the
“state” information from that session
is held in the client and passed with
each request.

http://www.ics.uci.edu/~fielding/
http://www.ics.uci.edu/~fielding/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

With the rise in cloud computing, stateless applications have
become more common, especially for consumer-scale applications.
These approaches make it easier to scale applications up and down
“horizontally” to meet user demands by simply adding and removing
virtual machines in a cloud environment. Think about the online
shopping site that needs to serve more users in the evening or on
weekends, or scale up to meet huge demand during holiday shopping
surges. With a stateless architecture, scaling infrastructure down
as user load goes down doesn’t interrupt any current user shopping
sessions. The user session can continue on any of the remaining VMs.

Conversely, because stateful applications require communications from
a particular user session to continue with the same server, it can be
challenging to use the horizontal scaling methods popularized by cloud
and Kubernetes technology. In these models, as the back-end service
scales down, it may shut down a CPU that is in the middle of serving a
user session, thereby losing the user’s state. While there are potential
workarounds to these issues, developers must consider how to handle
these situations if using horizontal scaling for a stateful application.

Assessing approaches to scalability

In addition to application architecture and scalability, other factors
influence your approach to Java application modernization.

Assessing other technical
requirements

Startup time and performance

For ecommerce applications, such as web stores, startup time is key.
Not only are buyers more likely to find the application since it ranks
higher in the Google search results, they are also less likely to commit
to a purchase if the online store is perceived as slow.

Startup time matters less on complex applications, such as business
applications, where users are expected to stay on the apps for hours.
Instead, it’s more important that the time to complete a task is as short
as possible. This is especially critical in applications where users must
complete particular tasks, dozens or hundreds of times a day.

Cross-field validation

Cross-field validation entails validating that data is correct by
comparing it to another field. For example, a password check must be
validated in conjunction with a user name. This validation is especially
critical when working with data that has multiple input values, for
example, in complex banking transactions.

Initial validation for UX purposes can be done on the client. However,
final validation must be done where the state can be trusted, which
is on the server. For stateless applications, this means you'll have
to rebuild the state and re-validate on the server for data validity
purposes.

Security

The stateful versus stateless approach is also a consideration when
addressing security. For example, in a stateful application, it's easier to
authenticate, because everything the authentication requires is kept in
the session state on the server. In a stateless application, you may need
to leverage more complex techniques such as secure tokens to avoid
relying on the “untrustworthy” browser to tell you who the user is.

Logging customers also requires different implementation techniques.
The stateful approach is straightforward — you just authenticate once
at login and know throughout the whole session who is at the other
end. In contrast, token-based authentication used for stateless apps
is quite a recent approach and requires a fair amount of learning new
concepts. Implementing a command such as "throw out user X from the
system" can turn out to be surprisingly difficult in a stateless setup.

Support availability

No one knows the software as well as the people who built it. An
important consideration for many enterprises is the availability of
vendor-backed support, where the software provider is committed to
providing expert support for utilizing their software. Support options
include training, expert development support, and “hot-lines” when
something goes wrong.

There are also 3rd-party companies that can provide the necessary
support for your business. In either case, scoping the need and
availability of support is key when committing to a technology-stack.

Contact Vaadin to learn more about Vaadin tools and services to help
with Java application modernization.

Mapping your path with Vaadin
Vaadin provides two proven frameworks for delivering Java-based web
applications with a modern UX and productive DX.

Vaadin Flow
Vaadin Flow is the only framework that enables developers to build full-
stack web applications with a modern, intuitive UI completely in Java. It
operates a secure, server-side architecture perfectly suited for stateful
applications.

Hilla from Vaadin
Hilla provides a faster and easier way to integrate a reactive TypeScript
front-end with a Java back-end. Hilla integrates seamlessly with
SpringSecurity for secure endpoints and supports stateless architecture
and horizontal scaling.

Pre-built UI components from Vaadin
Both Vaadin Flow and Hilla can leverage over 50 web UI components
that are commonly used in business applications. These range from
foundational form and input fields to complex grids and charts. Vaadin
UI components greatly accelerate the time to build an intuitive UX.

Selecting the right Vaadin framework
After assessing the factors discussed above, you can choose the right
Vaadin framework for your use case.

https://pages.vaadin.com/contact

